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Nonlinear oscillations of inviscid drops and bubbles 

By JOHN A. TSAMOPOULOS AND ROBERT A. BROWN 
Department of Chemical Engineering, Massachusetts Institute of Technology, 

Cambridge, MA 02139 

(Received 29 March 1982) 

Moderate-amplitude axisymmetric oscillations of incompressible inviscid drops and 
bubbles are studied using a Poincar6-Lindstedt expansion technique. The corrections 
to the drop shape and velocity potential caused by mode coupling a t  second order 
in amplitude are predicted for two-, three- and four-lobed motions. The frequency 
of oscillation is found to  decrease with the square of the amplitude; this result 
compares well with experiments and numerical calculations for drops undergoing 
two-lobed oscillations. 

1. Introduction 
The free oscillations of drops and bubbles have been studied since the original 

reports by Savart (1833) and Plateau (1873) of the pulsating moiiions caused by the 
break-up of a liquid jet. The small-amplitude oscillations of an inviscid globe held 
together by interfacial tension were first analysed by Rayleigh (1879, see also Lamb 
1932), who identified the fundamental modes of motion in terms of Legendre 
polynomials and calculated the corresponding frequencies. These linear results have 
been extended to include viscosity, first for a drop surrounded by a low-density gas 
(Reid 1960), and then for a drop in a viscous outer medium - by Miller & Scriven 
(1968) and more recently by Marston (1980) and Prosperetti (1980). Experiments 
(Marston & Apfel 1979, 1980; Trinh, Zwern & Wang 1982) performed on drops 
suspended in a neutrally buoyant and immiscible liquid have confirmed the oscillation 
frequencies of linear theory for small-amplitude deformations, but have shown a 
marked decrease in frequency with increasing amplitude (Trinh & Wang 1982). This 
decrease was anticipated by Rayleigh (1879), but has not been explained by tither 
analysis or full numerical simulation of drop oscillations. 

The only computer simulations for slightly viscous drops have been carried out by 
Foote (1973) and Alonso (1974). Both authors used the marker-and-cell finite- 
difference technique for solving time-dependent free-surface flows with viscosity, an 
extremely difficult numerical problem. The small number of calculations available 
in these works makes difficult the quantitative prediction of the sensitivity of the 
frequency and the evolution of the drop shape on the amplitude and mode of 
oscillation. The objective of the analysis presented here is to supply this insight. 

We present asymptotic analyses for the moderate-amplitude axisymmetric oscil- 
lations of inviscid and incompressible liquid globes. As pointed out by Miller & 
Scriven (1968), the analysis of the motion of an interface separating two inviscid 
liquids leads to a discontinuity between the components of fluid velocity tangential 
to and on either side of the interface. The slip is a result of neglecting a viscous 
boundary layer that develops on both sides of the interface and removes the 
singularity in tangential velocity. We avoid the physically unacceptable results 
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associated with inviscid liquid/liquid systems by limiting our study to cases where 
one phase is either a vacuum or a tenuous gas, so that its hydrodynamical effects 
can be neglected. The two limits of liquid internal and external to the closed interface 
are denoted as drops and bubbles, respectively. In these single-fluid flows no 
boundary-layers develop as the viscosity of the liquid is taken to be zero. 

The analysis is based on the method of Lindstedt and PoincarB (see Nayfeh & Mook 
1979) for approximating the time-periodic solutions of nonlinear differential 
equations. Our approach to the problem of an oscillating drop parallels previous 
applications of this perturbation scheme to inviscid standing waves (Tadj bakhsh & 
Keller 1960; Concus 1962). The formulation of the problem and the perturbation 
solutions are given in $52 and 3 respectively. The results are compared with the 
previous experiments and calculations in 34. 

2. Formulation 
2.1. Drops 

We consider the time-periodic, irrotational and incompressible motion of an inviscid 
drop with volume = $nR3, density p and interfacial tension CT. The surface of the 
drop during axisymmetric oscillations is described by RF(8,  t ) ,  where F(8,  t )  is the 
dimensionless shape function of the drop and 8 is the meridional angle in spherical 
coordinates. Scales based on the results of the linear theory are used to define the 
dimensional velocity potential (crR/p)l $( r ,  8, t ) ,  pressure ( 2 a / R ) p ( r ,  8, t ) ,  angular 
frequency (a/pR3)1 W ,  and time (pR3/a)4 w- l t ,  each in terms of its dimensionless 
counterpart. The dimensionless radial coordinate is scaled with the static radius R 
of the drop. In  terms of these variables the equations governing the inviscid time- 
periodic motion are 

Vz$ = 0 (0 < r < F(O,t) ,  0 < 8 < n), (1)  

a$/& = 0 ( r  = 0, 0 < 0 < n), ( 2 )  

V$(r ,  8, t+  2 4  = V$(r, 8, t ) ,  

[ F3(8, t )  sin 8 d8 = 2, 

2ns 
2n+ 1 

~on~oznF(8, t )P,(8)  sin8 costdtd8 = - (n  = 2 . 3 , .  . .), 

Equation ( 1 )  is the Laplace equation governing irrotational flow ; ( 2 )  is the condition 
for a zero radial velocity at the centre of the drop; (3) is Bernoulli's equation for the 
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pressure everywhere in the drop; (4) is the kinematic condition relating the surface 
shape to the velocity field; (5) is the balance of dynamic and capillary pressure across 
the interface, where the right-hand side of this equation is the negative of the local 
mean curvature 2% of the interface; (6) is the condition for the periodicity in time 
of the velocity field; (7) is the constraint for constant volume of the drop. The static 
pressure difference across the interface is Apo; the function G(t)  is introduced into (3) 
by integration. Equations (8) and (9) define the amplitude and phase of the oscillatory 
motion, respectively. If the shape function F ( 0 , t )  is represented as a series of 
Legendre polynomials, the constraint (8) dictates that  only the term proportional to 
Pw(0) cost contributes to  the amplitude e. Equation (9) requires the shape function 
to be always orthogonal to P,(B) sin t and hence sets the phase of the oscillation to 
be given by cost alone. 

2.2. Bubbles 
The equation set governing the dynamics of bubbles is identical with (1)-(9) except 
that the velocity potential is defined external to the interface F(0,  t )  and the boundary 
condition (2) is replaced by an appropriate far-field condition (1 1) : 

VZ$ = 0 ( F ( 0 , t )  d r d co, 0 d 0 d m), (10) 

Also the sign on the pressure contribution in the Young-Laplace equation (5) is 
changed. 

3. Perturbation solution 
3.1. Drops 

The solutions of the problem (1)-(9) are composed of the shape function F(0,  t ) ,  
the velocity potential $ ( r ,  0, t )  and the frequency w .  We calculate these variables as 
the terms in expansions of the amplitude of the motion by the now classical 
Poincar&Linstedt method (see Nayfeh & Mook 1979). This application is complicated 
by the dependence of the velocity potential $( r ,  0 ,  t )  on the shape of the mathematical 
domain as given by the moving boundary r = F(0,  t ) .  We account for changes in this 
boundary shape by combining the normal PoincarB-Linstedt expansion with the 
domain perturbation technique as detailed by Joseph (1973). To do this, the 
boundary shape is first immobilized as a sphere by introducing the change of 
coordinates r = qF(0,  t ) .  The expansions of the dependent variables in terms of E are 

where 

The static spherical drop is recovered as the zeroth-order solution of the equation 
set, i.e. F(O)(#, t )  = 1 and $(O) = 0, where the arbitrary reference potential inside the 
drop has been set to  zero. Using the chain rule for differentiation, each term 
$["'(y, 0, t )  in the expansion for the potential can be written as a sum of a contribution 
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evaluated on the spherical domain (0 < 7 < 1,0 < 8 < n) and terms that account for 
the deformation of the domain a t  each order of e.  The first three relationships are 

#"(q, 8, t ;  0) f $(0)(7, 8, t ;  O ) ,  ( 1 4 4  

where qW(7,8, t)  = akq5/aek are always defined in the spherical coordinate system 
(0 < 7 < 1, 0 < 8 < n). As outlined by Joseph (1973), the equation sets governing 
the terms $(k)(7,8,t)  account for changes in the domain shape only through 
corrections to the boundary conditions on the meniscus at each order of e.  These 
equation sets are presented below. 

The expansion of the mean curvature in ( 5 )  is greatly facilitated if the corrections 
to the shape function are represented at each order as a series of Legendre 
polynomials : 

W W 

F y e ,  t )  = x F ~ ) ( c s ,  t )  = z sg)(t)~,(o). (15) 
m - o  m - 0  

Then the mean curvature is expanded in terms of the amplitude as 

W 00 

-23r = 2 + e C  ( ~ - 1 ) ( ~ + 2 ) F ~ l ) ( 8 , t ) + ~ € Z  x (i-i)(i+2)F,(2)(8,t) 
i - 2  (l-o 

00 

-4 x ( ~ + k - - l ) ( ~ p ( e , t ) ) 2  
k - 2  

The equations governing the terms (F(l) ,  #l), do') are 

V2qw = 0 (0 < 9 < 1 ,  0 < 8 < n), (17) 

27l 
2n+ 1 

6 s,"" F(')P,(O) sin B cos t dt d o  = __ (n = 2,3 ,  . . .), 

~ ~ F " ) P , ( B ) s i n B s i n t d t d 8 = 0  (n=  2,3 ,  ...). 
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The pressure has been eliminated from (20) by substitution from the first-order form 
of Bernoulli’s equation (3). 

The equation set (17)-(24) has an infinite number of solutions, each of the form 

w(0) w,  ( 0 )  = ( n ( n - l ) ( n + s ) ) :  ( n =  2 ,3 ,  ...), 

which corresponds to  the linear modes of oscillation analysed by Rayleigh (1879). The 
mode n = 1 describes a rigid translation of the drop and has been omitted so that  
the centre of mass of the drop is fixed with respect to the coordinate system. 

The equations governing the terms 

V z p )  = 0 (0 

a p / a ? j  = 0 

I {2F(1)2 + F(2)}  sin 6 dB = 0,  

m r2n 

F(2)P,(e) sin 8 sin t dt dB = 0,  (33)  

where the subscripts n denote the particular linear solution (25)  for which the 
solutions of (26)-(33) hold. 

The velocity potential #2) is expanded in a Legendre series that  satisfies (26)  and 

(27L m 

and the shape function F(2)  is assumed to be given by (15) .  Equations (28)  and (29)  
are reduced to a sequence of non-homogeneous second-order equations for the 
coefficients {ym( t )}  and the correction to the frequency dl) by forming successively 
the integrals of (28)  and (29)  with each of the set {sin ePm(8)}. Applying the 
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orthogonality property of Legendre polynomials and eliminating the coefficients 
{&g)( t )}  between the two equations yields 

- 4w(l) sin t ( Pn, P,) 
d2y, + m(m-l)(m+2) ( 2 m + l ) ( m - l ) ( m + 2 )  

2w(o)s w(0)Z Y m  = dt2 

( n -  1) ( n + 2 )  - 
w(0) 

sin 2t (Pk2 - (n-  1) nPn, P,) 

+ -2(n3+3n2-2) (Pn, Pm) 
(m- 1) (m+2) 

where the notation (h(O) ,  g(8) )  stands for the inner product 

( h ( O ) , g ( O ) )  = rh(B)g(f?)sin8dO. 0 

The integrals in the non-homogeneous terms in the set (35) are expressed in terms 
of the well-known 3j and 6j symbols for spherical harmonics (Rotenberg et al. 1959) 
which extend the orthogonality properties of integrals of two Legendre polynomials 
to integrals involving products of three or four polynomials and their derivatives. 
Several formulae used in the reduction of equation (35) are listed in the appendix. 
Only a few of the integrals on the right-hand side of (35) are non-zero for each choice 
of the first-order solution (25), and these terms dictate the coupling of modes of 
oscillation that arise at second order. The algebra in this and subsequent manipula- 
tions is tedious, and the reduction of the formulas has been greatly expedited by the 
use of the symbolic manipulator MACSYMA (MACSYMA 1977 ; Pavelle, 'Rothstein 
& Fitch 1981) available on the M.I.T. computer system. 

The non-triviai equations that result from (35) are as follows: 
for n = 2, 

for n = 3,  

for n = 4, 

L33(~3(t))  = - id1) sin t ,  

L4,(y4(t)) = -&)sint- w s i n 2 t ,  (396) 
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where 

In forming these equation sets it has been assumed that the contribution of any purely 
homogeneous equation is zero. This is formally true only if m is constrained to satisfy 

=f= (integer)2, 
m(m- 1) (m+2) 

w y Z  

for m + n. Equation (40) excludes values of m for which the linear theory yields a 
time frequency that is an integral multiple of a fundamental frequency. 

In  each set the frequency correction w(l)  js determined so that secular terms in 
the solution vanish, which leads to  

w(1) = 0 (n = 2,3,4).  (41) 

The solutions of (37)-(39) are then determined so that the constraints (31)-(33) are 
satisfied. The final forms for the corrections (F(2 ) ,  $@)) are as follows: 

for n = 2, 
F(')(8, t) = -5 C O S ~  t +E( 1 - cos 2t) e(8) + %( 1 +f cos 2 t )  p4(0), (42 1 

(43) 
1 

(JO) 
qW(r, 8, t )  = - [+?+eP2(8)  r2 +#P4(8) r4] sin 2t ; 

for n = 3, 

w ( e ,  t )  = -+ cos2 t +%(I -kcos 2t) ~ ~ ( 0 )  +%(I - ~ c o s  24 p4(0) 
+#(l +&cos2t)P,(B), (44) 

(45) 
1 

# 2 ) ( q ,  0, t )  = wo [E+ye(8) r2 +%&?p4(8) r4++siaiP6(0) vs]  sin 2t; 

for n = 4, 

1 
(JO) 

#')(r,O7 t) = - [ ~ + + ~ ( 8 ) r 2 + ~ P 4 ( 8 ) r 4 + ~ P g ( 8 ) r 6 + ~ ~ ( 8 ) r 8 ~ s i n 2 t .  (47) 

The corrections to the velocity potential in the physical coordinate system ( r ,  0) are 
reconstructed by substituting the expressions for #')(q, 8, t )  and qP)(r, 0, t )  into (12) 
and using the definition of the coordinate 7 = r/F(B,  t ;  e )  to order e2. 

The analysis is extended to third order in order to calculate the first non-zero 
correction to  the frequency d2). The corrections to  the velocity potential and shape 
function (#3) ,F(3) )  are written as expansions analogous to (34) and (15), and the 
kinematic and Young-Laplace equations are reduced to a sequence of decoupled 
second-order equations in time by the same procedure used to calculate the set,s 
(37)-(39). The correction d2) is determined so that the solutions to  these equations 
contain no secular terms. We omit the details of this derivation, which are available 
in Tsamopoulos (1983) and list only the frequency corrections : 
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for n = 3, d2) = - ~~~f~~~ do) w - 2.08992d0) ; (49) 

for n = 4, d2) = - ' i i ~ ~ ~ $ ~ ~ ~ , ? 3 ~ ~ ( 0 )  w - 2 9 1 3 6 1 ~ ' ~ ) .  (50) 

Since the corrections d3) will be identically zero, the terms (48-50) give predictions 
for the frequency that are valid up to fourth order in the amplitude. 

The kinetic X and surface 9 energies of the drop are given by the expressions 

X E -  V$.V$dV, (F2+F$)&FsinOd0, 

where V is the volume of the drop. These quantities are approximated as follows: 

6 (51) 
1 

2 s, 
for n = 2, X = $e2sin2t+O(e3), 9 = ~ + c ~ ~ c o s ~ ~ + O ( ~ ~ ) ;  (52) 

for n = 3, (53) 

for n = 4, (54) 

The lowest-order terms in both the kinetic and potential energies are due to e-order 
corrections in the shape and velocity potential respectively, and thus do not represent 
the finite-emplitude behaviour of the oscillations. 

X = e2+9 sin2 t + 0 ( c 3 ) ,  9 = 2 + e2 4$ C O S ~  t + 0 ( e 3 )  ; 

X = e2 2 sin" t + 0 ( e 3 ) ,  9 = 2 + e2 2 C O S ~  t + O(e3) .  

3.2. Bubbles 

The procedure for calculating the first- and second-order corrections to the frequency, 
shape and velocity potential for a bubble follows directly from that outlined in $3.1. 
The results are given here in the form of the series (12). The solutions to the first-order 
problem are 

(55a)  P y 8 ,  t )  = F p ( 8 ,  t )  = PJB) cost, 
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“(1) = 0. (58 c )  

The first non-zero corrections to the oscillation frequency appear a t  second order in 
amplitude and are as follows: 

for n = 3, 

for n = 4, 

(59) 

(60) 

(61) 

~ ( 2 )  = - UW3 “(0) % - 1-45426~(01; for n = 2, 30870 

w(2) = -355251121 159999840 do) z - 2*22032d0) ; 

“(2) = - 1 4  4&’&?4w do) % - 2*89772d01. 

4. Results and comparisons 
Representative shapes of drops and bubbles through a half-period of oscillation are 

shown on figures 1 and 2 for the lowest three fundamental modes of deformation, 
n = 2, 3 ,4 .  I n  both figures, the continuous curves represent the shapes predicted by 
the first-order results and the dashed curves are the shapes corrected to  second order 
in amplitude. In  each case, the amplitude has been set to E = 0.4, which for n = 2 
corresponded to a pure prolate-to-oblate oscillation with a ratio of the major L to 
minor W axis a t  maximum deformation of a 3 L /  W x 1-81. This value of tz has been 
chosen so that the correction to  the shape a t  order c3 will be O( of the deformation 
(assuming F 3 ) ( B ,  t )  = O(1)) and so that the shapes in figures 1 and 2 show the same 
magnitude of deformation as the numerical calculations of Foote (1973) and Alonso 
(1974). 

For the shapes in figure 1, the drop had its largest distortion a t  t = 0 when it had 
no velocity. The linear theory predicted a perfectly spherical shape after a quarter 
of the period ( t  = in). The second-order corrections deformed this sphere into a 
prolate shape for the fundamental (n  = 2) mode of oscillation and into multilobed 
forms for the n = 3 and n = 4 modes. At t = 7r the distortion of the shape was again 
maximum and the velocity zero. For times between 7r and 27r the drop retraced the 
shapes in its evolution between t = 0 and 7r. 

The differences between the contributions of inertia in drops and bubbles are seen 
by comparing the second-order approximations shown in figures 1 and 2. Two-, three- 
and four-lobed drop oscillations were much more elongated along the axis of 
symmetry for an < t Q $7 than corresponding oscillating bubbles. For n = 2 mode 
oscillation, the coefficient for the term P2(@ in (42) was largest in the second-order 
correction for the drop shape, whereas the term proportional to P4(e) dominated the 
correction (57) for the bubble. For the n = 4 oscillation mode, the shapes of the drop 
and bubble became qualitatively different for $r < t < in. For t near an, the bubble 
had an eight-lobed shape, while the drop had a four-lobed form a t  the same times; 
compare figures 1 (m) and 2(m).  

A number of the asymptotic results for oscillating drops can be compared directly 
with the numerical calculations of Foote (1973) and Alonso (1974) for viscous drops 
oscillating in the fundamental mode. The effect of viscosity on the frequency of 
oscillation and on the shape of the drop is small when the product (aR/v2p)i  is large, 
where v is the kinematic viscosity (see Chandrasekhar 1961). I n  the calculations of 
Foote (R = 0.06 em, v = 0.06 em2 s-l, g = 75 dyn emp1, p = 1 g a = 1.7) and 
Alonso (R = 0.66 x cm, v = 0.75 x em2 s-l, g = 1.60 x lozo dyn ern-’, 
p = 1.66 x 1015 g ~ m - ~ ,  a = 1-8 and 2.5) this ratio was 35.4 and 3.3 respectively. Thus 
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the comparison of Foote’s calculations with our inviseid theory is reasonable, while 
Alonso’s results may deviate substantially solely because of viscosity. 

The drop shapes shown in figure 1 are in qualitative agreement with those 
calculatcd by Foote and by Alonso. Several other points of agreement are worth 
mentioning. As noted by Foote, the linear theory predicted shapes that were slightly 
re-entrant when t = 0. This feature was not apparent in either our asymptotic results 
correct to second order (see figure l a )  or in Foote’s numerical results. Alonso used 
least-squares techniques to  fit her numerically calculated shapes with a sequence of 
Legendre polynomials and discovered that the shapes were well represented by sums 
of the P,(/3) and p4( /3)  functions alone, as predicted by (25) and (42). Also, the 
sine-squared time dependence of the kinetic and potential energies predicted in 
equation (52) agreed with the calculations of both Foote and Alonso. 

A drop undergoing n = 2 oscillations spent a considerably longer part of each period 
in a prolate form than in an oblate one. The percentage excess time is shown in figure 
3 as a function of the amplitude of the oscillation, as measured by a = L/  W .  Also 
shown in this figure are the results of Foote (1973) that have been extrapolated from 
the data point (a = 1.7, excess time = 14%) and his comment that the excess time 
varied linearly with oscillation amplitude. The agreement is reasonable. Bubbles 
exhibited only a slight tendency to  stay in prolate forms, as shown by the line on 
figure 3. 

The quadratic decrease in frequency with amplitude predicted here is compared 
on figure 4 to the numerical results of Foote and Alonso. The asymptotic results are 
within ten per cent of Foote’s viscous calculations over the entire range of amplitude 
0 < a < 1.8 presented by that author. The single value calculated from Alonso’s 
report differed more significantly from our results. 

Finally, the inviscid predictions are compared on figures 3 and 4 to experimental 
results of Trinh & Wang (1982) for almost neutrally buoyant drops of silicone oil 
and carbon tetrachloride suspended in distilled water. The shapes were set into oscil- 
lation by acoustically driving the drop near its fundamental frequency. The driver 
was then turned off and the drop motion evolved into free oscillation. I n  the limits 
of moderate-amplitude oscillations and large drops (R x 1 cm), the oscillation 
frequencies measured this way were expected to be near those of an inviscid 
liquid/liquid system. This conclusion was reached by calculating the viscous cor- 
rection to the inviscid frequency derived by Prosperetti (1980, see figure 14) using 
the physical parameters from the experiments of Trinh & Wang.? 

Trinh & Wang’s measurements for the percentage of time spent in prolate shapes 
by the neutrally buoyant drop are shown on figure 3, and, as expected, are bracketed 
by the inviscid calculations for drops and bubbles. Experimental data for the 
dependence of frequency on amplitude for drops with radii of 0-62 ern (0) and 0.49 
ern (0 )  are shown on figure 4. The data for the larger drop is again described by an 
asymptotic result’ intermediate to thc calculations for drops and bubbles for a less 
than 1-7. The experimental measurements for the smaller drop differ systematically 
from the inviscid results ; this difference may represent the coupling between viscosity 
and the finite-amplitude motion. 

t We have assumed r = 40 dyn cm-l as a reasonable interfacial tension for a clean oil/water 
interface. 
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FIGURE 2(f-j). For caption see p. 534. 
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FIGURE 2. Shapes of bubbles oscillating in the n = 2 (a-e), n = 3 v-j) and n = 4 (k-a) modes for 
the amplitude E = 0 4 .  The solid (-) and dashed (---) curves are respectively the first- and 
second-order approximations to the drop shapes. 
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FIGURE 3. The percentage of each period that  a drop in n = 2 oscillation spends in a prolate shape 
as a function of the amplitude of the oscillation measured by the maximum ratio of the major t o  
minor axes L/ W .  Asymptotic results (-), numerical calculations (---) of Foote (1973) and 
experimental results (0) of Trinh & Wang (1980) are shown. 
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FIGURE 4. The change in n = 2 oscillation frequency with increasing amplitude of oscillation as 
measured by L/  W .  Asymptotic results (solid curves), numerical calculations of Foote (A) and 
Alonso (+) ,  and experimental results of Trinh and Wang (0 ,  R = 049 cm;  0, R = 0.62 cm) are 
shown. 

5. Summary and conclusions 
A general theory has been derived for the moderate-amplitude time-periodic 

oscillations of inviscid drops and bubbles. The variations with amplitude of the drop 
shape, velocity field and the frequency of oscillation have been calculated in terms 
of simple expressions. The asymptotic results are in good agreement with numerical 
calculations for slightly viscous drops. The decrease in frequency caused by increasing 
the amplitude of motion agrees quantitatively with the numerical calculations of 
Foote (1973) and is in reasonable agreement with neutrally buoyant experiments for 
two-liquid systems, considering that the formation of the viscous boundary layer at 
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the interface and its interaction with the amplitude of the oscillation has been ignored 
in our comparison. 

The stability of the finite-amplitude motions reported here is not mathematically 
guaranteed and can only be examined by calculating the evolution of small-amplitude 
perturbations in much the same way as reported by Hall & Seminara (1980) for a 
bubble undergoing spherosymmetric oscillations. Such an analysis may lead to new 
insights into the dynamics of the fissioning of drops. 

This research was partially supported by a fellowship to  J. A. T. from the Depart- 
ment of Chemical Engineering at M.I.T. The authors are also indebted to L. E. Scriven 
for some timely discussions concerning this work. We also acknowledge the use 
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Appendix 
Integrals of products of Legendre polynomials and their derivatives are con- 

veniently written in terms of the 3j and 6j symbols (Rotenberg et al. 1959; Brink 
& Satchler 1968). Several integrals used in the analysis presented here are 

n+m 2 

P,(0)Pm(O)P,(B)Pk(O)sinOdO= 2 Z (Z j+ l ) ( ,"  dy(i 3 ,  
i-In-ml 

I4 = f'k(O)P~(O)e(O)P'(O) sinOdO = -2 [n (n+l ) rn(m+l ) ]4  l: 

Properties of the symbol (: d) cause i t  to  be zero whenever the triangle inequality 

(11-ml < n < Z+m) is not satisfied between the integers of the first row. It is this 
property that terminates the expansions (e.g. (15) and (34) )  for the drop shapes 
and potentials. This symbol is also identically zero when a + b + c  ?= 0, or when 
a = b = c = O a n d s i m u l t a n e o u s l y n + m + l = 2 h + 1 ,  w h e r e h = 0 , 1 , 2 ,  .... It is this 
last property that eliminates the odd-order Legendre polynomials from the second- 
order approximation. 
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